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Chapter 1

Introduction

1.1 Motivation

Robot manipulation is central to achieving the promise of robotics. The very
definition of a robot requires that it has actuators, which it can use to interact
with the world around it. The potential applications for autonomous manipu-
lation are immense: robots capable of manipulating their environment could be
deployed in hospitals, elder- and child-care, factories, outer space, restaurants,
service industries, and homes.

Given the wide variety of deployment scenarios and unsystematic environmen-
tal variations in human spaces, an effective manipulation robot must operate
in unpredictable and unfamiliar environments for both the robot and its de-
signers [KroemerNiekumKonidaris21]. Traditional robot control methods in-
volve modeling domain dynamics and deriving mathematically-based algorithms.
While theoretically robust, these methods heavily depend on the accuracy of the
world model [ArgallEtAl09].

The real world often contains too much variation to formulate an accurate model
of the environment, the objects in it, or the skills required to manipulate them in
advance. Learning offers an effective solution by developing statistical algorithms
that can learn from examples and generalize to unseen data, allowing robots to
perform tasks without explicit instructions. Researchers have thus focused on
how a robot should learn to manipulate the world around it. This research has
ranged from learning individual manipulation skills from human demonstrations
to learning abstract descriptions of manipulation tasks suitable for high-level
planning and discovering an object’s functionality through interaction, among
other objectives.



2 1.2 Problem Statement

The goal of robot learning is to teach a robot to select an action based on its
current world state. This mapping between world states and actions is called a
policy and is fundamental to many robotics applications. A particularly promis-
ing approach, which has seen great success in recent years, is Learning from
Demonstration (LfD). Within LfD, a policy is learned from examples provided
by a teacher, usually an expert in the demonstrated task. The performance of
learned policies heavily depends on the scale and diversity of these demonstra-
tions [KhazatskyEtAl24]. This suggests that creating large, diverse, high-quality
robot manipulation datasets is crucial for developing more capable and robust
robotic manipulation policies.

However, creating such datasets is challenging. Unlike vision or language data,
training manipulation policies typically requires robot manipulation data with
recorded observations and actions, which cannot be easily obtained from the
internet. Collecting robot manipulation data in diverse environments involves lo-
gistical and safety challenges, especially when deploying robots outside controlled
laboratory settings. Additionally, collecting data at scale requires considerable
investments in hardware and human labor for supervision, particularly for gath-
ering demonstration data. Consequently, even the most general robot manipu-
lation policies today are mostly trained on data collected in controlled, lab-like
environments with limited scene and task diversity.

1.2 Problem Statement

A fundamental trade-off in acquiring robotic manipulation data is balanc-
ing diversity against transferability. Recent works like [PadalkarEtAl23]
and [KhazatskyEtAl24] have shown that human manipulation capability can be
a suitable source of demonstration data. Especially, when aiming to scale robotic
manipulation skills using machine learning. Although humans would be able
demonstrators, the challenge in robotics is that, to date, it is expensive and te-
dious to collect demonstration data from humans in a robot-compatible format.

Currently, data collection platforms struggle to balance the diversity of collected
actions and their transferability to effective robot policies for two reasons:

1. Embodiment Gap: There is a fundamental difference between human ac-
tions and robot capabilities, known as the embodiment gap. Methods like shad-
owing human motions or learning from human videos, although easy to scale, do
not translate well to robot actions due to differences in embodiment, resulting in
inefficient policy learning.
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2. High Setup Costs and Expertise Requirements: Data collection meth-
ods, such as the widely used teleoperation approach, are resource-intensive and
require specialized knowledge to operate. Even though these systems collect
robot-native data, their complexity limits the ability to collect diverse demon-
strations at scale.

The objective of this thesis is to develop a suitable concept for an intuitive and
effective data collection interface that reduces the embodiment gap, captures
transferable data, and supports the learning of diverse manipulation skills for
robots.

To achieve this, a sensorized hand-held gripper interface is proposed that simul-
taneously minimizes the embodiment gap while remaining intuitive and flexible.
The system eliminates the need for a physical robot during data collection because
demonstrations are recorded in the end-effector space. The main contributions of
this work include: (1) a novel hardware adaptation equipped with state-of-the-
art sensors to enable intuitive high-quality data acquisition in real-time and (2) a
comprehensive software suite for easy workflow control and multimodal data pro-
cessing. The chapter also outlines the system’s hardware setup, workflow, and
data processing methods

1.3 Thesis Structure

The remainder of this thesis is organized as follows. First, Chap. 2 explains the
fundamentals of learning manipulation tasks from human demonstrations. Then,
Chap. 3 presents an extensive review on the state of the art of robot learning for
manipulation, including a discussion on recent data collection methods. Based
on this, in Chap. 4, a concept for a sensorized hand-held gripper interface is
developed. The proposed system design enhances state-of-the-art methods in
three key aspects: it allows for real-time data acquisition with both visual and
depth information, streamlines workflow with user-friendly control interfaces, and
boosts accessibility by accommodating various end-effectors. In Chap. 5, the
developed system is evaluated in several experiments for its accuracy and ef-
ficiency. The results of these experiments are then analyzed and discussed in
detail. Finally, the findings of this thesis are summarized and future potential
work is discussed in Chap. 6.

In the spirit of fostering further research and collaboration, all hardware and
software systems are provided open-source to facilitate evaluation and replication
of this work: https://github.com/J4nn1K/demonstration-interface.

https://github.com/J4nn1K/demonstration-interface
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Chapter 2

Concepts in Learning for
Manipulation

As introduced in Chap. 1, learning is a highly effective solution for providing
robots with autonomous manipulation skills. This approach is particularly valu-
able when the robot’s environment or tasks exhibit too much variation to allow
for the creation of an accurate world model. The process of learning a manipula-
tion skill consists of two steps: (1) acquiring a dataset and (2) deriving a policy
from it. The scope of this thesis lies in the first step: acquiring data.

Since policy performance is closely tied to the quality of the dataset it was trained
on, it is important to understand the connection between policy and data. This is
why this chapter aims to provide the reader with a comprehensive understanding
of how the learning of manipulation tasks works as a whole. This chapter will
present the fundamentals of learning manipulation tasks (Sec. 2.1) and specifically
how this can be done using human demonstrations (Sec. 2.2), which is the method
that this thesis builds on.

2.1 Formalizing Manipulation Learning Tasks

Robot learning problems can be formulated as Partially-Observable Markov De-
cision Processes (POMDP) [KaelblingLittmanCassandra98]. A POMDP is a gen-
eralization of the individual Markov Decision Processes [Howard60] and models
the relationship between an agent and its environment. Formally, a POMDP
is a 7-tuple (S, A, T, R, Ω, O, γ), where S is a set of states; A is a set of ac-
tions; T (s′ | s, a) is a transition function, giving the probability distribution
over states s′ reached after executing action a in state s; R(s, a, s′) is a reward
function, expressing the immediate reward for executing action a in state s and
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transitioning to state s′; Ω is a set of observations; O(o | s′, a) is a set of condi-
tional observation probabilities, giving the probability of receiving observation o
which depends on the new state s′ and on the just taken action a; and γ ∈ [0, 1]
is a discount factor expressing the agent’s preference for immediate over future
rewards [KroemerNiekumKonidaris21].

Here, the goal of learning is to find a deterministic control policy, π : O → A,
that maps observations to actions so as to maximise the return, or discounted
sum of future rewards ∑∞

i=0 γiri, for that specific problem.

According to [KroemerNiekumKonidaris21], learning problems for manipulation
can typically be places into one of five broad categories:

1. Learning to define the state space

2. Learning a transition model of the environment

3. Learning motor skills

4. Learning to characterize a motor skill

5. Learning compositional and hierarchical structure

This work focuses on learning motor skills. When learning motor skills, the robot
attempts to learn a motor control policy that directly achieves some goal. This
goal ranges from learning task-specific solution policies to policies that can pro-
duce a solution to any task in a task family given a context vector, to useful motor
skills that constitute a component of the solution policy but are not themselves a
complete solution. In the following, different policy parameters will be discussed.
A more in-depth discussion can be found in [KroemerNiekumKonidaris21].

State and Observation Spaces

Modelling manipulation tasks requires representations of the robot’s environment
and the objects that it is manipulating. These representations serve as the basis
for learning skill policies. Within-task variations are captured by the state space
(those features that a manipulation action can change); across-task variations
are captured as part of the context space (attributes that are fixed in any specific
task but aid generalization across pairs of tasks).

As they are capable of manipulating their surroundings, robots can use actions
to enhance their perception of the environment. Robot perception is therefore
broadly divided into passive and interactive perception, with the key difference
being whether or not the robot physically interacts with the environment. The
term passive perception refers to the process of perceiving the environment with-
out exploiting physical interactions with it. For example, recognizing and local-
izing objects in a scene based on a camera image. In interactive perception, the
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robot physically interacts with its surroundings to obtain a better estimate of
the environment. For example, a robot may push an object to better estimate its
constraints or lift an object to estimate its weight. Robots can use a wide range
of sensor modalities to observe the effects of its interactions, including haptic,
tactile, vision, and audio.

Action Spaces

The robot ultimately needs to send a control signal to its actuators to perform
actions in the physical world. These signals may, for example, define the torque
for an electric motor [LevineEtAl16]. The outputs of policies often do not work
directly at the level of actuator signals. This is why, in practice, an additional
controller is often placed between the policy and the actuator. Using an addi-
tional controller allows the robot to leverage a large body of prior work on control
for robotics [SpongHutchinsonVidyasagar20]. Example controllers include sim-
ple linear PID controllers as well as more complex model-based admittance and
impedance controllers.

Both desired position and force information can be defined in the joint space or
a Cartesian task space for the end-effector. For manipulation tasks, it is often
easier to generalize interactions with objects across the robot’s workspace using
a Cartesian action space [Mason81]. For example, with a Cartesian action space,
applying an upward force on a grasped object would be the same action anywhere
in the robot’s workspace. The controller is then responsible for mapping these
desired signals into the joint space for actuation. For a joint-space action policy,
the robot would need to learn different joint torques depending on the arm’s
current configuration.

The inclusion of a controller also allows the robot to use a policy that operates
at a lower frequency than the controller. While the low-level controllers may
operate at 100s or 1000s of Hertz, the policies can operate at lower frequencies.
For policies operating at lower frequencies, an additional interpolation step may
be used to guide the controller between the desired values.

Policy Structure

In robotic manipulation, specific parameterizations are often used that restrict
the representational power of the policy; if these restrictions respect the under-
lying structure of the task, generalization and data efficiency are often improved
without significantly impacting asymptotic performance. The spectrum of pol-
icy structures ranges from highly general (but often sample-inefficient) to highly
constrained (but potentially more sample-efficient) representations. An overview
on policy structures is given in [KroemerNiekumKonidaris21].
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Recent works are predominantly using neural networks. Neural networks can be
categorized as generic fixed-size parametric policy representations. These repre-
sentations make stronger assumptions about the complexity and structure of the
policy. They are the most flexible and data-driven but they also typically re-
quire large amounts of data to produce high-quality generalization. Deep neural
networks in particular have become ubiquitous for learning in robotics for two
reasons; (1) they can be used to represent state spaces for manipulation tasks
with high dimensional observation spaces and (2) they are highly effective at
combining data from multiple sensor modalities or information sources. For ma-
nipulation tasks, robots often use this approach to merge information between
passive modalities (e.g., vision) and more interactive modalities (e.g., touch and
haptics), or to incorporate additional task information (e.g., instructions).

2.2 Learning from Human Demonstrations

The problem of learning a mapping between world state and actions lies at the
heart of many robotics applications. The development of policies by hand is often
very challenging and as a result machine learning techniques have been applied
to policy development.

In contrast to reinforcement learning, which learns from a robot’s experiences in
the world (or a model of it), imitation learning aims to learn about tasks from
demonstration trajectories. This can be thought of as a form of programming,
but one in which the user simply shows the robot what to do instead of writing
code to describe the desired behavior.

The simplest way to use demonstration data to learn a motor skill is to use it
as supervised training data to learn the robot’s policy. This is commonly called
behavioral cloning [HayesDemiris94, SchaalEtAl05, RossGordonBagnell11]. The
demonstration di ∈ D provides a set of observation-action pairs (oi, ai), that
can be used as training data for a supervised learning algorithm to learn policy
parameters that should, ideally, be able to reproduce the demonstrated behavior
in novel scenarios.

The Learning from Demonstrations (LfD) problem is constructed af-
ter [ArgallEtAl09] as follows. A dataset is composed of example executions of
the task by a demonstration teacher (Fig. 2.1, left). The world consists of states
S and actions A, with the mapping between states and actions being defined by
a transition function T . It is assumed that the state is not fully observable. The
learner instead has access to observed state O, through the mapping M : S → O.
A policy π : O → A selects actions based on observations of the world state. A
single cycle of policy execution at time t is shown in Fig. 2.1 (right).
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LfD Policy Derivation

Scope of this Work

Policy Execution

Teacher
Demonstrations

Policy
Derivation

D π
π World

at

ot

Figure 2.1: Control policy derivation and execution. The teacher’s demonstra-
tions in D are used to derive a policy π. During policy execution at
timestep t the policy π is interacting with the world via an action at

and receives an observation ot.

Learning from demonstration data has been extensively studied in several differ-
ent settings, because it can enable the robot to leverage the existing task exper-
tise of (potentially non-expert) humans to (1) bypass time-consuming exploration
that would be required in a reinforcement learning setting, (2) communicate user
preferences for how a task ought to be done, and (3) describe concepts, such as
a good tennis swing, that may be difficult to specify formally or programmati-
cally [KroemerNiekumKonidaris21].

The next two sections will formalize the two steps needed for learning a manip-
ulation task from demonstrations; (1) how the dataset is built and (2) how the
observation to action mapping is learned.

2.2.1 Gathering Demonstrations

There are various techniques for executing and recording demonstrations. The
dataset is composed of observation-action pairs recorded during teacher execu-
tions of the desired behaviour. Exactly how they are recorded, and what the
teacher uses as a platform for the execution, varies greatly across approaches.
Section 3.2 will provide an overview on different approaches.

For LfD to be successful, the states and actions in the learning dataset must be
usable be the learner. In the most straightforward setup, the states and actions
of the teacher executions map directly to the learner. In reality, however, a direct
mapping will often not be possible, as the learner and teacher will likely differ in
sensing or mechanics. The issue of correspondence deals with the identification
of a mapping between the teacher and the learner that allows the transfer of
information from one to the other.
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In [ArgallEtAl09] correspondence is defined with respect to two mappings, shown
in Fig. 2.2: the record mapping gR(o, a) and the embodiment mapping gE(o, a).

Furthermore LfD data acquisition approaches can be split into two categories
based on the embodiment mapping, and thus the execution platform; (1) Demon-
stration: There is no embodiment mapping gE(o, a) = I(o, a), because demonstra-
tion is performed on the actual robot learner (or a physically identical platform)
and (2) Imitation: there exists an embodiment mapping gE(o, a) ̸= I(o, a), be-
cause demonstration is performed on a platform which is not the robot learner
(or a not physically identical platform).

When teacher executions are demonstrated the robot records from its own sensors
as its body executes the behavior. There exists no embodiment mapping issue
between the teacher and learner but there may exist a non-direct record map-
ping, however, for state and/or actions, if the states experienced (actions taken)
by the demonstrator are not recorded directly, and must instead be inferred
from the data. Based on this distinction, two common approaches for providing
demonstration data to the robot learner can be identified: (1a) Teleoperation:
the teacher operates the robot learner platform and the robot’s sensors record
the execution; thus gR(o, a) = I(o, a) and (1b) Shadowing: the robot learner
records the execution using its own sensors while attempting to match or mimic
the teacher motion as the teacher executes the task; thus gR(o, a) ̸= I(o, a).

For imitation approaches embodiment issues do exist between the teacher and
learner. These approaches can further be divided based on whether the record
mapping is the identity or not: (2a) Sensors on teacher : sensors located on the
executing body are used to record the teacher execution; thus gR(o, a) = I(o, a)
and (2b) External observation: sensors external to the executing body are used
to record the execution. These sensors may or may not be located on the robot
learner; thus gR(o, a) ̸= I(o, a).

2.2.2 Deriving a Policy

Given a dataset of state–action examples that have been acquired using one of the
methods described in the previous section, a policy can be derived. LfD has seen
the development of three core approaches to deriving policies from demonstration
data: (1) learning an approximation to the state-action mapping – a mapping
function, (2) learning a model of the world dynamics and deriving a policy from
this information – a system model, and (3) a sequence of actions can be produced
after learning a model of action pre- and post-conditions – a plan. As already
mentioned in Sec. 2.1 this work focuses on deriving skill policies. This is why
only mapping functions are discussed in further detail. See [ArgallEtAl09] for
more details on the other approaches.
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Figure 2.2: Intersection of the record and embodiment mappings (right). The
left and right columns represent an identity (Demonstration) and
non-identity (Imitation) embodiment mapping. Each column is then
subdivided by an identity (top) or non-identity (bottom) record map-
ping. Typical approaches to providing data are listed within the
quadrants.

The mapping function approach to policy learning calculates a function that
approximates the observed state to action mapping, f : O → A, for the demon-
strated behavior. The goal of this type of algorithm is to reproduce the underlying
teacher policy, which is unknown, and to generalize over the set of available train-
ing examples such that valid solutions are also acquired for similar states that
may not have been encountered during demonstration.

According to [ArgallEtAl09] mapping approximation techniques fall into two cat-
egories depending on whether the prediction output of the algorithm is discrete
or continuous. Classification techniques produce discrete output, and regression
techniques produce continuous output. Many techniques for performing classi-
fication and regression have been developed outside of LfD and the reader is
referred to [HastieEtAl09] for a full discussion.

Classification approaches categorize their input into discrete classes, thereby
grouping similar input values together. In the context of policy learning, the
input to the classifier is robot states and the discrete output classes are robot ac-
tions. Classification methods can be applied at three action control levels: basic
motion control, action primitives, and complex behaviors.
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Regression approaches map demonstration states to continuous action spaces.
Similar to classification, the input to the regressor are robot states, and the
continuous output are robot actions. Since the continuous-valued output often
results from combining multiple demonstration set actions, typically regression
approaches apply to low-level motions and not high-level behaviors.

In recent years, policy learning from demonstration, in its simplest form, is usu-
ally formulated as the supervised regression task of learning to map observations
to actions [ChiEtAl23]. In practice, the unique nature of predicting robot ac-
tions – such as the existence of multi-modal distributions, sequential correlation,
and the requirement of high precision – makes this task distinct and challenging
compared to other supervised learning problems. The next section will review
recent attempts to address this challenge.



Chapter 3

State of the Art

To provide the reader with an understanding of how manipulation data is actually
collected and used to train models, this chapter will review recent works in the
field of policy derivation and data collection. First, to provide an understanding
of what is needed to make a manipulation policy work, state-of-the-art repre-
sentations and dataset are presented in Sec. 3.1. Then, recent data collection
methods are presented in Sec. 3.2 and discussed in Sec. 3.3.

3.1 Learning Algorithms and Datasets

Recall from Sec. 2.1 that the essence of learning robot behavior is to find a control
policy π : O → A, that maps observations to actions. It will be now discussed
how these observations, actions, and policies look like in practice.

Learning Algorithms

As introduced in Sec. 2.1, a policy representation must be chosen for learning
manipulation tasks. In recent years, deep neural networks have become the pre-
dominant policy representation for learning manipulation policies. This is why
the following discussion will only focus on neural networks or models. The reader
is referred to [KroemerNiekumKonidaris21] for a survey on other policy represen-
tations.

Practical applications of policy learning often require hand-engineered compo-
nents for perception, state estimation, and low-level control. To address this
issue works have focused on so called end-to-end policy learning. End-to-end
policies directly map raw observations like RGB-images to low-level actions like
motor torques.
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This pixel-to-action formulation is particularly suitable for manipulation, because
manipulation often involves objects with complex physical properties, such that
learning the manipulation policy is much simpler than modeling the whole envi-
ronment. The first works that learned manipulation from visual demonstrations
were [LevineEtAl16], Behavioral Cloning (BC) [TorabiWarnellStone18], and Vi-
sual Imitation through Nearest Neighbors (VINN) [PariEtAl21].

The success of transformer models [VaswaniEtAl17] in natural language process-
ing (NLP) and computer vision motivated a number of recent works that collected
demonstration datasets and trained transformer-based policies on them. The ma-
jor advantages of these models lie in handling multi-modal observations as inputs
and scaling with large, diverse datasets. An example of this are Behavior Trans-
formers (BeT) [ShafiullahEtAl22].

Recent advancements have notably elevated the transformer model’s capabili-
ties, namely the prediction of action chunks and the denoising diffusion training
objective. Action Chunking with Transformers (ACT) [ZhaoEtAl23] predicts a
sequence of actions with a transformer decoder and is able to perform single
fine real-world manipulation tasks with 80-90% success, with only 10 minutes
worth of demonstrations. Extending the multi-modal flexibility by integrating
the transformer backbone with a denoising diffusion model [HoJainAbbeel20]
facilitates long-horizon motion planning. This model type is called Diffusion Pol-
icy (DP) [ChiEtAl23] and it is a powerful parametrization for multimodal action
output distributions that combine expressivity with scalability. Diffusion Pol-
icy is achieving similar success rates to ACT [FuZhaoFinn24, HaFlorenceSong23,
GhoshEtAl24]. A very recent method called Vector-Quantized Behavior Trans-
former (VQ-BeT) [LeeEtAl24] improves on models such as BeT and Diffusion
Policies and is therefore setting a new state-of-the-art.

Papers have also focused on broadening the generalization abilities of robot
policies. This can mean to perform low-level visuomotor control across
tasks, environments, and robotic systems. These models are usually
equipped with the ability to understand and follow language instructions
[StepputtisEtAl20, NairEtAl22a, MeesEtAl22], often by learning language-
conditioned policies. Some of them are incorporating Internet-scale pre-
trained Vision-Language-Models (VLMs) to boost generalization and en-
able emergent semantic reasoning. Recent examples include RT-2-X (VLM-
based) [BrohanEtAl23, PadalkarEtAl23], OCTO (DP-based) [GhoshEtAl24],
RoboAgent (ACT-based) [BharadhwajEtAl23], and OpenVLA (VLM-based)
[KimEtAl24]. These models are often calles Vision-Language-Action (VLA) mod-
els or generalist policies. They can be as small as 27 M parameters in OCTO and
become as large as the 55 B parameter version of RT-2-X.
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Since observation and action spaces vary significantly across robots, generalist
policies are often using a normalized action space. The most common one being
a 7-dimensional action vector controlling the end-effector (x, y, z, roll, pitch, yaw,
and gripper opening or the rates of these quantities) [PadalkarEtAl23]. This way,
an output of the model can be interpreted (de-normalized) differently depending
on the embodiment used. A common observation space are recent camera images
and language instructions.

A notable trend in prior studies is their reliance on large training datasets, of-
ten involving hundreds of demonstrations per task, to train robust transformer
policies. This is likely due to limited 3D spatial reasoning when just using cam-
era images as observations. A line of work has been focusing on improving 3D
spatial reasoning by including depth information like RGB-D images as input
to the manipulation policy. These policies are also using more specific percep-
tual representations. PerAct [ShridharManuelliFox23] for example is using vox-
elized point clouds and 3D convolutional networks and Act3D [GervetEtAl23] a
multi-scale 3D feature cloud. The very recently proposed Robotic View Trans-
former 2 (RVT-2) [GoyalEtAl24] is using a point cloud reconstruction and mul-
tiple virtual views to learn precise manipulation tasks. RVT-2 can learn high-
precision tasks with as little as 10 demonstrations and is achieving a new state-of-
the-art on RLBench [JamesEtAl20] improving the success rate from 65% to 82%.
A very similar approach is taken by Equivariant Diffusion Policy [YangEtAl24]
which uses a scene point cloud and the robot pose as input and can generalize to
novel objects and scenes after learning from just 5 minutes of human demonstra-
tions in each task.

Datasets

A key ingredient for training robot policies is robot training data. In computer
vision and NLP, training on large and diverse datasets scraped from the inter-
net yields models that work in a wide range of new tasks. Similarly, in robot
mani-pulation, a number of recent works have demonstrated that larger, more
diverse robot training datasets enable us to push the envelope on policy gen-
eralization, including positive transfer to new objects, instructions, scenes, and
embodiments [BharadhwajEtAl23, PadalkarEtAl23, KhazatskyEtAl24]. But in
contrast to vision and language data that can be scraped from the web, obtain-
ing robot data at scale is challenging and often involves significant investments
in hardware and human labor.

In recent years, there have been multiple efforts for building robot ma-
nipulation datasets of increasing scale and diversity. See Tab. 3.1 for an
overview. The datasets are either collected via scripted and autonomous poli-
cies (RoboNet [DasariEtAl19], MT-Opt [KalashnikovEtAl21]) or human teleop-
eration (RT-1 [BrohanEtAl22], RH20T [FangEtAl23]).
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Table 3.1: Recent publicly available robotic manipulation dataset show an in-
crease in scene diversity. Scenes refers to the number of unique robot
work spaces. Dobb·E is the only dataset which was collected with a
hand-held tool. It consists of a wide variety of scenes which indicates
the ability to collect diverse data using hand-held tools.

Dataset # Trajectories # Scenes Method
RoboNet (2019) 162k 10 scripted
MT-Opt (2021) 800k 1 scripted/learned

RT-1 (2022) 130k 2 human teleop
RH20T (2023) 13k 7 human teleop
RoboSet (2023) 98.5k 11 human/scripted

BridgeData V2 (2023) 60.1k 24 human/scripted
Dobb·E (2023) 5.6k 216 human tool-based

Open X-Embodiment (2023) 1.4M 311 dataset aggregation
DROID (2024) 76k 564 human teleop

RoboSet [BharadhwajEtAl23] and BridgeData V2 [WalkeEtAl23] contain a com-
bination of scripted and teleoperated demonstrations. To this date, there is
only one public dataset which was collected using a hand-held device; Dobb·E
[ShafiullahEtAl23]. Works like the Open X-Embodiment [PadalkarEtAl23] and
DROID [KhazatskyEtAl24] aim to scale data diversity by being reusable across
institutions. Nevertheless, it is unclear if this method is able to scale enough to
enable similar breakthroughs as seen recently in natural language processing or
computer vision.

3.2 Data Collection Methods

This section will discuss four data acquisition techniques used in research to learn
from human demonstrations; (1) Visual Demonstrations from Human Video, (2)
Shadowing and Motion Capture, (3) Teleoperation, and (4) Hand-held Tools.
Note that the term teleoperation also means remote control of a robot and thus
is often used in conjunction with all kinds of data acquisition techniques. This
work will stick to the categorization introduced in Sec. 2.2, meaning that not
all ”teleoperation” works will be categorized as teleoperation. Also, data collec-
tion methods often cannot be strictly categorized into groups because the defini-
tion of record- and embodiment-mappings changes with the choice of observation
and action spaces.
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Recall from Sec. 2.2 and Fig. 2.1 that teacher executions are seperated in demon-
stration, meaning that the demonstration is performed on the actual robot learner
and imitation, meaning that the demonstration is performed on a platform which
is not the robot learner (or a not physically identical platform).

Visual Demonstrations from Human Video

Utilizing in-the-wild video data (e.g. YouTube videos) can be an attractive
way acquire very large amounts of demonstration data. The most common
way is to learn from diverse passive human demonstration videos. To in-
fer action data from passive human video, previous works use hand pose de-
tectors [BahlGuptaPathak22, WangEtAl23, ShawBahlPathak23], or combined
human videos with in-domain teleoperated robot data [SchmeckpeperEtAl20,
QinEtAl22]. To bridge the embodiment gap and transfer actions between humans
and robots recent works used hand pose retargetting [QinEtAl22] and extraction
of embodiment-agnostic keypoints [XiongEtAl21]

At this point it should be noted that even if inferring actions from in-
the-wild video data is a ongoing effort, Internet-scale video data is suc-
cessfully used for pre-training of visual representations in robot learn-
ing [NairEtAl22b, RadosavovicEtAl23]. Most model architectures including
RT-1 [BrohanEtAl22], Diffusion Policy [ChiEtAl23], and ACT [ZhaoEtAl23] are
applying pre-trained Convolutional Neural Networks (CNNs) to input observa-
tion data [LeCunBengioothers95, LeCunBengioHinton15, PerezEtAl18].

Shadowing and Motion Capture

Recall from 2.2 that shadowing means that the demonstration is performed on
the actual robot learner that mimics the teacher’s demonstrated motions while
recording from its own sensors. This method is particularly useful when training
robots with similar form factors to human beings. The human-like morphology of
humanoids presents a unique opportunity to leverage the vast amounts of human
motion and skill data available for training, bypassing the scarcity of robot data.

Recent works in this field include OmniH2O [HeEtAl24], HumanPlus [FuEtAl24],
and Open-TeleVision [ChengEtAl24]. See Fig. 3.1 for a images. To bridge the
physical gaps between humanoids and humans in morphologies and actuation
these works are translating motion from human to robot using motion retarget-
ing libraries like dex-retargeting [QinEtAl23] or by training low-level policies for
following human motions [FuEtAl24].

Besides for humanoid form factors, recent works have also focused on vision-based
shadowing for controll of single robot hands and hand-arm systems. The main
works in this field are DexPilot [HandaEtAl20], Holo-Dex [ArunachalamEtAl23a],
DIME [ArunachalamEtAl23b], and AnyTeleop [QinEtAl23]. All of these works
are focusing on capturing the dexterous abilities of human hands.
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(a) OmniH2O (VR) (b) HumanPlus (Camera) (c) Open-TeleVsion (VR)

Figure 3.1: Recent data collection methods utilizing shadowing. In all three
works humanoid robots are mimicing human actions using vision-
based motion retargeting.

Teleoperation

Recall from 2.2 that teleoperation means that the teacher operates the robot
learner platform (or a physically identical platform) and the robot’s sensors
record the execution. The simplest form of teleoperation is kinesthetic teach-
ing [KormushevCalinonCaldwell11, SteinmetzMontebelliKyrki15]; a user demon-
strates a new skill to a robot by manually guiding the robot’s arm through the
motion.

A more common approach for teleoperation is the utilization of interfaces such
as a 3D spacemouse [3Dconnexion24], VR or AR controllers [Meta24], and hap-
tic devices [Force Dimension24] which abstract away the kinematic constraints
on the robot. Their control (record) mapping usually lies in the task space
(i.e. the end-effector pose) and is therefore the identity mapping. The RH20T
dataset [FangEtAl23] was collected using a Force Dimension sigma.7 haptic de-
vice. This device provides force feedback to the operator but greatly constraints
the workspace (see Fig. 3.2). Datasets like BridgeData V2 [WalkeEtAl23] and
DROID [KhazatskyEtAl24] were collected using Meta’s Quest 2 VR controllers.
The robot platforms in these works are mostly equipped with parallel jaw grip-
pers. The HATO platform [LinEtAl24] uses Quest 2 to control multi-fingered
hand hardware with touch sensing. See Fig. 3.2 for pictures of these systems.

Another recent and promising approach are leader-follower (i.e. puppeteering)
systems. Works in this category include ALOHA (unilateral con-
trol) [ZhaoEtAl23, AldacoEtAl24] and GELLO (bilateral control) [WuEtAl23].
They are using scaled kinematically equivalent structures, allowing the user to
interact with the controller as if they were directly controlling the target arm, as
in kinesthetic teaching. ALOHA and GELLO are pictured in Fig. 3.2.
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(a) RH20T (Haptic Device) (b) DROID (VR) (c) HATO (VR)

(d) ALOHA (puppeteering) (e) GELLO (puppeteering)

Figure 3.2: Data collection platforms utilizing teleoperation.

Hand-Held Tools

Recently, using hand-held grippers as a data collection interface has emerged
as a promising middle-ground alternative between in-the-wild human videos and
teleoperation. These devices are constructed after robotic end-effectors and try
to minimize the embodiment gap between data collection and robot inference
while remaining intuitive and flexible to use (see Fig. 3.3). Depending on the
observation-action-space recorded by the hand-held tool, these devices can loosely
be categorized as teleoperation because their data space is identical to the cor-
responding robot platform. Hand-held data collection is currently limited to the
commonly used end-effector pose and gripper state as action space because it
is not build on a kinematic robot structure. Nethertheless, when using this ac-
tion space there is no morphological gap that needs to be bridged by a mapping
between human and robot actions.

Hand-held data collection devices are very intuitive and portable by nature. This
makes them very suitable for collecting diverse demonstration datasets in differ-
ent environments. First works in this field were grabber tool (see Fig. 3.3 pro-
posed by [SongEtAl20]) and [YoungEtAl21]. These devices struggled with insuffi-
cient visual context and action imprecision. Recently, Dobb·E [ShafiullahEtAl23]
proposed a reacher-grabber tool mounted with an iPhone to collect single-arm
demonstrations for the Strech robot platform [KempEtAl22]. Dobb·E demon-
strates policy deployment for quasi-static tasks and requires environment-specific
policy fine-tuning.
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(a) Grabber tool (b) Dobb·E Stick (c) UMI

Figure 3.3: Hand-held data collection devices.

Dobb·E’s limitations are adressed by the Universal Manipulation Inter-
face (UMI) [ChiEtAl24]; a hand-held data collection and policy learning frame-
work that allows direct transfer from in-the-wild human demonstrations to de-
ployable robot policies. UMI’s data collection hardware takes the form of
a trigger activated, handheld 3D printed parallel jaw gripper with soft fin-
gers, mounted with a GoPro camera as the only sensor and recording de-
vice (see Fig. 3.3). UMI is constructed after the WSG-50-110 gripper by Weiss
Robotics [Weiss Robotics24]. For bimanual manipulation, UMI can be extended
with another gripper.

3.3 Discussion

As pointed out in Sec. 3.1 Transformer-based model architectures have become
very capable policy representations for learning of manipulation tasks. When
trained on high-quality demonstrations they are capable of performing precise
manipulation and are able to generalizing to unseen tasks, environments, and
embodiments. These advancements are mainly based on recent efforts to collect
high-quality and diverse demonstration datasets. Section 3.2 presented different
large-scale robotic datasets and elaborated on various techniques for collecting
robot data. Based on these findings, the following section will discuss what the
most suitable method for scaling up data collection is and what downsides this
method currently has.
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Before discussing the data collection methods in detail, a few general observations
on robotic data collection and policy learning from recent works will be noted:

• Diversity in Tasks and Environments: Diversity is the most cru-
cial characteristic for demonstration datasets. Multiple works have shown
that data diversity boosts generalization ability and thus policy perfor-
mance [PadalkarEtAl23, KhazatskyEtAl24].

• Action Space: While using joint-space action representations can be
beneficial for a very limited set of tasks, employing end-effector pose ac-
tions has been found sufficient for learning effective manipulation poli-
cies [PadalkarEtAl23, ChiEtAl24].

• Camera Position: Research has been conducted on various camera posi-
tions and wrist-mounted camera data has proven to be sufficient, as demon-
strated by [ChiEtAl24].

• Depth Data: As proven by [GoyalEtAl24] and [YangEtAl24] utilizing
additional information beyond just RGB images, such as depth data, sig-
nificantly improves policy effectiveness

• End-effectors: Although parallel-jaw grippers sometimes limit the range
of achievable motions compared to multifingered hands [BicchiKumar00],
they have been shown to be more than suitable even for complex tasks, as
evidenced by [ZhaoEtAl23].

3.3.1 Discussion of Data Collection Approaches

Visual Demonstrations from Human Video. While collecting videos of
humans performing manipulation tasks directly is relatively inexpensive and
easy to scale, overcoming the morphology gap between robots and humans re-
mains challenging. Learning from video demonstrations has three major down-
sides; (1) video demonstrations lack explicit action information which is crucial
for learning generalizable policies, (2) the evident embodiment gap between hu-
mans and robots hinders action transfer from videos to robots and (3) the ob-
servation gap induced by the embodiment gap introduces inevitable mismatch
between train and inference time observation data, worsen the transferability of
the resulting policies.

Shadowing and Motion Capture. Mimicking human motions can be useful
when working with high degree of freedom action spaces (like in multi-fingered
hands or humanoid form factors) because this level of complexity would otherwise
be even harder to transfer from demonstrations to robot actions. Even though
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shadowing might be a suitable for such action spaces the main downside is similar
to an issue of learning from human video; explicit action information is hard to
derive in highly complex action spaces. Solving this problem often introduces
high computational cost and noticeable latency which reduces intuitiveness for
the operator.

Teleoperation. Collecting demonstrations by teleoperation is the most com-
mon method to acquire robot data right now. VR controllers are very easy to use
and haptic devices even enable force feedback. But because of the morphological
differences between these control devices and the robots these systems can be un-
intuitve to new users. Additionally, haptic devices are usually very expensive and
greatly constrain the workspace. Leader-follower platforms provide an intuitive
answer to these problems. Because of their kinematically equivalent structure
they are easy to use and enable direct action-transferability. While being the
dominant method for robotic data collection right now, teleoperation systems
restrict our ability to efficiently collect large-scale diverse data in the wild. Their
reliance on real robots during data collection limits the type and number of en-
vironments the system can gain access to. Furthermore, these systems are often
build around a specific robot platform which limits the ability for embodiment
diversity.

Hand-held Tools. Most data collection setups struggle with in-the-wild ca-
pabilities and thus are limited in their ability to intuitively collect diverse ma-
nipulation data. Hand-held devices emerged as a promising alternative. They
eliminate the need for physical robots during data collection and offer a more
portable interface for in-the-wild robot teaching. Hand-held grippers collect data
in the end-effector task space that is directly transferable to different robot em-
bodiments (e.g. 6DoF or 7DoF robot arms). They are simultaneously minimizing
the embodiment gap while remaining intuitive and flexible. Nethertheless hand-
held data collection comes with two major downsides; (1) kinematic limits of the
downstream deployment robots are unknown at the time of data collection (valid
but hardware-infeasible actions can be recorded) and (2) action recovery impre-
cision (most devices rely on monocular structure-from-motion (SfM) which often
struggles to recover precise global action due to motion blur or insufficient tex-
ture).
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3.3.2 Conclusion

Due to their transferable action space and intuitive and portable nature, hand-
held tools seem to be the most promising approach for collecting large amounts
of diverse task demonstrations. Besides the above mentioned problems of hand-
held systems, three issues in previous works (especially UMI [ChiEtAl24]) are
identified, which limit the device’s ability to be a suitable demonstration interface:

• Limited Sensing and Feedback Capabilities: While state-of-the-art
teleoperation systems employ sophisticated sensors to enable real-time
feedback during data collection and the ability to record depth data
[KhazatskyEtAl24], the hand-held system UMI uses a GoPro as its only
sensor. In this case data processing and filtering can only be done post
data collection.

• Complicated Workflows: To collect data with UMI a four-step process
needs to be done prior to data collection; (1) GoPro preparation, (2) time-
code synchronization, (3) Recording of a mapping video, and (4) recording
of a gripper calibration video. This is already a short workflow but it still
consist of more steps than just pressing a button to record a session. Addi-
tionally, the usage of a GoPro forces the operator to use the GoPro’s control
interfaces. This can become infeasible when collecting bimanual data since
the operator has no free finger to press the GoPro’s record button.

• End-effector Specificity: UMI is constructed after a specific gripper,
namely WSG-50-110 from Weiss Robotics [Weiss Robotics24]. This limits
accessibility and transferability to new gripper types.
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Chapter 4

Design of a Demonstration
Interface

In this chapter, a concept for a hand-held data collection framework for demon-
stration of manipulation tasks is presented. The system aims to address the
issues pointed out in Sec. 3.3, namely limited sensing capabilities, complicated
operator workflows, and no adaptability to other end-effectors. For this, we start
by setting out the features, we believe are necessary for an improved hand-held
manipulation demonstration system:

• Intuitive: The system is intuitive for a human operator to use without
training. The system can be taken into any environment where a human
is able to operate. The human demonstrator is able to perform dexterous
manipulation tasks with it.

• Capable: The ability to capture and transfer natural and complex human
manipulation skills to a high-quality robot-native data format. The system
should be forward compatible to real-time data processing.

• Adaptable: Researchers and enthusiasts should be able to reproduce the
system and use data to train their own robots, even with different sensors
and end-effectors.

Section 4.1 gives a high-level conceptual overview of the proposed system. Sec-
tion 4.2 and 4.3 go into more detail on how the observation space and action
recovery system were designed. Section 4.4 presents the data processing pipeline
and software suite.
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Observation Module (Sec. 4.2)
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Action Handle (Sec. 4.3)
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Figure 4.1: Conceptual overview of the data collection framework that consists
of an end-effector, the Observation Module and the Action Handle.
It is equipped with four sensors: (1) a RGB-D camera, (2) a tracking
camera with IMU, (3) a trigger for gripper control, and (4) a record
button. The recorded observations and actions can be used as a
dataset D for training a policy π (not scope of this work).

4.1 Conceptual Overview

Based on the features derived above this section will present a high-level concep-
tual overview of the proposed hand-held data collection framework. Recall from
Sec. 2.2 that the goal of a data collection system is to provide the learner with
demonstrations di ∈ D consisting of observation-action pairs (oi, ai). During test
time the learner tries to predict actions based on given observations.

The proposed data collection device takes the form of a 3D-printed handle that
is equipped with four sensors; (1) a camera to record the device’s observation
space, (2) a tracking camera to recover motion data, (3) a trigger for gripper
control, and (4) a push button to start and stop recordings (see Fig. 4.1, left).
Because of its modular mounting method, the device can be trivially adapted for
different end-effectors. The following paragraphs will go into more detail on the
different features of the framework.
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Figure 4.2: Left: schematic front and side view of the device, annotated with
external dimensions. Right: a photograph of the real prototype.

Observation Module. This component records the observation
space (i.e. RGB-D camera images) during data collection and test time.
It is equipped with a RGB-D camera and mounted on the data collection
device in the same way it will be mounted on the robot during policy inference.
This way it is assured that the model receives the same observations during
training and test time. Section 4.2 will go into more detail on the design of this
component.

Action Handle. This component takes care of recovering robot-native actions
from human motion. Using visual-inertial simultaneous localization and map-
ping (SLAM) [Durrant-WhyteBailey06] a 6 degree of freedom (DoF) pose is esti-
mated and recorded. Additionally the Action Handle is equipped with a trigger
for parallel-jaw gripper control in continuous space and a push button to easily
start and stop recordings. Section 4.3 will go into further detail on how the
actions are recovered.

Mounting. To account for different end-effector types the mounting method of
the system is constructed after ISO 9409-1 [ISO04]. This norm defines a circu-
lar plate as mechanical interface for exchangeable, hand-mounted end-effectors.
This way it can be ensured that the Observation Module is mountable on most
industrial robots and that many standard end-effectors can be attached to the
device.

End-effector. One of the shortcomings of previous hand-held systems was iden-
tified to be the need for a specific end-effector (see Sec. 3.3). The proposed
mounting method enables the developed system to be usable with different end-
effectors. As a first step, this work utilizes parallel-jaw grippers because of their
simplicity and durability.



28 4.1 Conceptual Overview

Component Weight Cost
ZED Mini Stereo Camera 63 g 630 €

RealSense D405 Depth Camera 58 g 300 €
Electronics (Arduino, Wires etc.) 25 g 30 €

3D-printed Parts 158 g 20 €
Screws and Inserts 16 g 10 €

Gripper (Robotiq 2F-85) 900 g 5300 €
1220 g 6290 €

Table 4.1: A list of used components including their weight and price. Off-board
components like cables and the external computer are not listed here
because they are interchangeable and do not significantly contribute
to the device’s weight.

Data Infrastructure. To facilitate a light-weight software suite the whole code-
base is written in Python (with the exception of C-like code running on the
Arduino for sensor-readouts). The code does not depend on robotics middle-
ware like the Robot Operating System (ROS). Data processing and workflow
control are implemented using a node-like software structure which is based on
Python’s multiprocessing package. Multi-processing is chosen because of its
simple and direct ability to implement concurrency and messaging. Section 4.4
will go into more detail on the software implementation.

Assembly. The device weighs 1220 g, with an external dimension
of 239 mm × 153 mm × 276 mm (L×W×H). The cost of the device without
a gripper and external computer is around 990 €. When factoring in a grip-
per like the Robotiq 2F-85 and a computer, for example Nvidia’s Jetson
Orin Nano Development Kit, the end-price is approximately 7000 €. This is
significantly cheaper than setups with robots like DROID [KhazatskyEtAl24]
and ALOHA [ZhaoEtAl23], which cost around $ 20000 but more expensive than
other hand-held setups like UMI [ChiEtAl24], which is reported to to cost $ 298.
Table 4.1 provides a detailed list of used components. Figure 4.2 shows the di-
mensions and a real picture of the device. CAD-files of the 3D-printed parts and
the codebase can be found here:
https://github.com/J4nn1K/demonstration-interface.

https://github.com/J4nn1K/demonstration-interface
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FoV

Figure 4.3: Left: observation camera field of view (FoV). Right: example RGB
and depth image observations.

4.2 Recording of Transferable Observations

The Observation Module is responsible for providing observations to a policy
during training and test time. The proposed device minimizes the observation
embodiment gap by using the Observation Module for human demonstrations
and robot deployment. This is possible due to the wrist-mount camera position.
More on this will be discussed below. This section will highlight the design
considerations of the two main features of the Observation Module; (1) the camera
positioning, and (2) the inclusion of depth information, in addition to common
RGB-image observations.

Wrist-mounted Camera Position

One of the challenges of robotic data collection as pointed out in Chap. 1 is a em-
bodiment gap. As already pointed out above, the proposed device is minimizing
the observation gap by by using the same Observation Module for data collection
and test time. This way, the observations recorded by the wrist-mount camera
are indistinguishable between data collection and deployment. On the right of
Fig. 4.1 the mounting during deployment is pictured.

Besides reducing the embodiment gab, using a wrist-mounted camera has ad-
ditional benefits; (1) mechanical robustness and easy deployment: because the
camera is fixed relative to the fingers, mounting the observation module and grip-
per on robots does not require camera-robot-world calibration and (2) portability:
without the need for an external static camera, as they are commonly used in
state-of-the-art systems like DROID [KhazatskyEtAl24], the system is simplified
and becomes highly portable. Recent works like [ChiEtAl24] have even observed
that during training with a moving camera, the policy learns to focus on task-
relevant objects or regions instead of background structures. As a result of this,
the final policy naturally becomes more robust against distractors at inference
time.
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RGB and Depth Channels

As seen in Sec. 3.1 depth perception can significantly boost policy efficiency.
While state-of-the-art teleoperation platforms like ALOHA 2 [AldacoEtAl24] and
DROID [KhazatskyEtAl24] are utilizing wrist-mounted depth cameras to capture
depth information, hand-held devices currently only employ RGB-cameras. The
hand-held system UMI [ChiEtAl24] tries to integrate depth perception by using
side mirrors for implicit stereo. The device proposed in this thesis will directly
employ a depth camera to capture direct and high-quality depth information.

Camera Selection

A wide range of cameras are used in robot learning platforms for wrist-mounted
observations. Commonly used cameras include but are not limited to; simple
Web-cameras like Logitech’s C922x Pro, which is used by ALOHA [ZhaoEtAl23],
Intel’s RealSense D405, which is used by ALOHA 2 [AldacoEtAl24], and ZED
Mini from StereoLabs, which is employed in DROID [KhazatskyEtAl24]. UMI
[ChiEtAl24] is build on observations from a GoPro.

Initial experiments using the ZED Mini from StereoLabs as the observation
camera showed insufficient depth channel quality on short ranges (< 30 cm)
even though StereoLabs is reporting an effective depth range down to 10 cm
[StereoLabs24]. In comparison, depth data from Intel’s RealSense D405 was of
seemingly sufficient quality. An explanation for this is can be that the D405 has a
way shorter baseline (distance between the two lenses), which can lead to a higher
accuracy when calculating depth from disparity in short ranges. Since the D405
captures sufficient image and depth data, it was chosen to be the observation
camera in this thesis.

4.3 Human-to-Robot Action Mapping

The Action Handle maps human actions into a robot-native format. It records a
7-dimensional action space that consists of continuous 6D Cartesian end-effector
motion as well as a discrete dimension to control the opening and closing of the
gripper. The handle is constructed for use with a right hand but can trivially
be adapted for left hands and also bi-manual use. The index finger controls
the trigger, which’s state is then mapped to the gripper’s opening and closing
motions. The thumb is used to push the record button.

This section will explain the design of the four main features of the Action
Handle; (1) the modular mounting interface, (2) the action recovery using
SLAM, (3) the trigger for gripper control and (4) the record button.
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Figure 4.4: Features of the Action Handle. Left: ISO 9401-1-50-4-M6 mounting
interface for end-effectors. Right: visual-intertial SLAM recovers pose
data from human motion using camera images of the environment and
IMU data.

Modular Mounting

To create a modular and truly robot-native data collection method, the main
mechanical mounting interface of the proposed system is constructed after a typ-
ical robot flange. Similar to reusing the Observation Module for data collection
and robot deployment, this design choice facilitates a minimized embodiment gap
between the hand-held handle and the robot during deployment. The mounting
is the same in both scenarios.

Most industrial manipulators that are used in research like Franka Robotics’
Panda and Universal Robots’ UR-series are utilizing the same mechanical inter-
face for end-effectors. This interface is described by ISO 9409-1:2004 [ISO04] and
is used as mounting method on the discussed Action Handle. The norm ISO
9409-1 defines the main dimensions, designation and marking for a circular plate
as mechanical interface. It is intended to ensure the exchangeability and to keep
the orientation of hand-mounted end-effectors.

The dimensions of the mechanical interface can be described by a specific desig-
nation code; ISO 9401-1 – d1 – N – d4. In this designation code d1 stands for the
pitch circle diameter, N for the number of thread holes, and d4 for the thread of
the hole. Commonly used robots like Panda and the UR-series are build on the
designation code ISO 9401-1-50-4-M6. This specific version of the ISO 9401-1 is
pictured on the left in Fig. 4.4.

Pose Estimation using SLAM

There are different options to estimate a pose in 3D space. Localization can be
done on-board a system, typically by utilizing cameras and IMU-data (accelerom-
eter and gyroscope) or off-board using external cameras which are usually static.
External localization can be very accurate, with sub-millimeter errors at a very
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high temporal resolution of hundreds of Hertz. An example for such a system are
the Vicon’s Vero motion capture cameras [Vicon24]. These high-speed cameras
are placed around a capture area to record the positions of reflective markers
attached to a subject. The cameras emit infrared light (invisible to the naked
eye), which is reflected back by the markers and can be captured to record the
position of the markers. The pose of VR controllers in systems like Meta’s Quest
2 are recorded in a similar fashion: the Quest 2 headset is equipped with multiple
outward-facing cameras that capture the environment and infrared LEDs on the
controllers [Meta24].

Off-board localization has three major downsides for the discussed application;
(1) it depends on external sensors and usually requires markers (often infrared-
based), (2) these systems can be very expensive and hard to set up, and (3) they
are limited to workspaces in which they are placed - moving them can require
significant effort. To facilitate portability and intuitiveness for the proposed
device a on-board localization method is chosen; visual-inertial SLAM.

Visual simultaneous localization and mapping is a method that uses visual data
from cameras to estimate pose information. The process begins with capturing
(depth) images from a camera. Features (distinctive points or areas) in the
images are detected using algorithms like ORB [CamposEtAl21]. These features
are described in a way that allows for matching between frames and to establish
correspondences. Using the correspondences, the system estimates the camera’s
movement between frames. A more in-detail explanation on visual SLAM can
be found in [TaketomiUchiyamaIkeda17]. Data from inertial measurement units
(IMUs) can be used to refine the SLAM-algorithm’s pose estimation.

During first experiments that tried to estimate pose data from the Observation
Module’s front-facing camera (in that case, a ZED Mini), resulted in un-usable
tracking data. This is likely due to insufficient structure in recorded images.
These test demonstrations were recorded in the common tabletop manipulation
setting (i.e. looking down at a table). Due to a lack of visual features in these
observations, the SLAM-algorithm was likely unable to detect correspondences
and therefore unable to calculate accurate pose data.

Previous works like UMI [ChiEtAl24] addressed this issue by employing a fisheye
lens, that, due to its wide field-of-view (FoV) of 155°, still records visual features
of the environment, even when facing a plain surface. This thesis addresses this
by using a dedicated tracking camera (see Fig. 4.4) which faces away from the op-
erator and the workspace to record sufficient visual features of the environments.
The capabilities of this method will be analysed in Sec. 5.2.

The tracking pipeline is implemented using StereoLab’s ZED Mini stereo cam-
era [StereoLabs24] and the ZED-SDK’s positional tracking API. The camera is
equipped with an inertial sensor capable of providing accelerations and angular
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velocities in motion. StereoLabs’ positional tracking API is closed-source and
therefore no details on the implementation of the visual-inertial SLAM algorithm
can be presented here. During data collection, the estimated pose is transformed
from the tracking camera’s image frame to a more robot-native frame at the
center of the mounting plate (see Fig. 4.4).

Intuitive Gripper Control

To enable interaction with the real world besides movements, the end-effector
needs to be controlled in a deterministic way. Since the discussed system should
be usable with multiple end-effectors (different parallel-jaw grippers), a general
mapping from human input to opening and closing of the gripper needs to be
defined. In this thesis, a discrete range [0, 100] ∈ R is used as an intermediate
representation to map the operator’s input to the gripper state. The range cor-
responds to: 0 - fully opened and 100 - fully closed. With this representation we
can ensure a standardized gripper interface, independent of the gripper’s finger
stroke.

The operator’s input is acquired using a standard gamepad trigger. It is designed
to provide analog input, allowing for variable control rather than a simple binary
on/off state. This is achieved through the use of a rotary potentiometer, which
translates the physical displacement of the trigger into an electrical signal. This
analog electrical signal is digitalized using a Arduino Nano and sent to a connected
computer via serial communication. Section 4.4 will go into more detail on how
the signal is processed.

Workflow Control

A shortcoming of UMI [ChiEtAl24] has been identified in its workflow control.
The recording of a demonstration must be initiated using the attached GoPro’s
button or a connected GoPro Remote. As recordings need to be started and
stopped for every demonstration, this interaction method can become tedious,
especially during long data collection sessions with many demonstrations. Fur-
thermore, bimanual use of UMI-grippers becomes infeasible without a second
operator. This is because, when holding the handles of the devices, the operator
cannot reach the record buttons. To address this issue, this thesis proposes a
button placed inside the handle near the operator’s thumb. This design allows
recordings to be easily started with the same hand that is holding the device,
enabling bimanual use with only a single operator.

Similar to the trigger, the button is connected to the Arduino Nano on the back of
the device. A binary on/off signal is recorded and sent to a connected computer
via serial communication. Section 4.4 will provide more details on how these
signals are processed.
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(a) Typical tabletop demonstration setup. (b) Demonstration of a manipulation task.

Figure 4.5: The proposed system can be easily set up using two power supplies,
four USB-cables, and a second computer (left) for workflow control.

4.4 Workflow and Data Processing

This section will describe the intended device usage and how the signal and data
processing backend looks like.

Setup and Workflow

The hardware setup is straight forward; when the Action Handle and Observation
Module are already assembled, an end-effector can be mounted to the device using
four M6-screws. Then, four USB-cables are used to connect the gripper, the two
cameras, and the micro-controller, to a computer respectively. The computer
needs to run Linux as its operating system and have a CUDA-enabled Nvidia
GPU. In this work, the Nvidia Jetson Orin Nano Development Kit is used (see
Fig. 4.5a, at the top right of the table). It is small and therefore very portable,
but still capable of performing all computations needed for the usage of the device,
namely signal processing, the SLAM algorithm, and recording of data streams.
For energy, two power supplies are needed; one for the computer and one for the
gripper.

For workflow control, it is easier to connect a second computer (e.g. a laptop,
see Fig. 4.5) to the system using ethernet. This computer can communicate to
the system via a SSH-tunnel and will be used to control the workflow and to
easily download collected demonstration data. Because the second computer is
only connected via ethernet, it can be placed anywhere in the network.

To start a data collection session, only a single Python-
script, record session.py, needs to be executed on the computer. The
script takes care of launching all processes necessary for data collection, namely:
sensor interfaces, hardware calibration, control loops, and recording pipelines.
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After a few seconds, in which the gripper will automatically open and close
for calibration and in which the data streams from all sensors are verified, the
device is ready for recording.

An episode recording can be started by the operator using a push on the record
button. This will start a recording loop at a user-specified frequency. All sensor
readings for observations and actions are synchronized to a specific timestamp
and saved in memory. When the operator is done with one demonstration, a
second press on the record button will stop the episode. The recorded data
will now be saved from memory to disk in a HDF5 format. For 20 seconds of
demonstration time, saving usually takes less than one second. Details on the
data format will be discussed below.

Data Processing

As already briefly introduced in Sec. 4.1, the software suite, which is the pro-
cessing backend of the device, is designed in a lightweight fashion to support
efficiency and to require minimal dependencies. Four major component classes
are programmed in Python to interface with the hardware: Handle, Tracker,
Camera, and Gripper. Handle provides an abstract interface to the micro pro-
cessor, which sends trigger and button values via serial communication. Tracker
provides an interface to the tracking camera and takes care of coordinate transfor-
mations. Camera is directly forwarding image data from the observation camera.
Finally, Gripper is interfacing with the end-effector using a low-level Modbus
RTU protocol.

The component classes are used in record session.py to interface with the
hardware at an abstract level. Figure 4.6 shows the dataflow within this
Python program. This program, which is the main process, starts five sub-
processes using Python’s multiprocessing package. Each sub-processes is han-
dling one of the following functions: read handle, read tracker, read camera,
control gripper, and record data. The first four are interfacing with the hard-
ware via the above defined component classes. Their outputs are written to
shared objects between the processes using multiprocessing.Manager. These
object can then be read by the fifth process, record data, that takes care of
workflow control (i.e. the recording state) and the aggregation, synchronization,
and export of recorded data. In this process, a simple state machine waits for a
press of the record button and then starts to save the recorded data into memory
at a defined frequency. This is done by reading the shared objects, which are
written by the other processes. When the button is pressed again, record data
will create HDF5 datasets, write the data from memory into them, and save them
to a .h5 file. The choice of this data format is discussed below.
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read handle
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Memory (30 Hz)
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Figure 4.6: Schematic dataflow within the main program. Four processes (left)
are interfacing with hardware and writing their data to shared ob-
jects (center). These shared objects are read by the recording pro-
cess (right) at a defined frequency of 30 Hz and saved to disk when
the episode is finished.

A few things should be noted here. Most of the recent datasets like
DROID [KhazatskyEtAl24] and OXE [PadalkarEtAl23] provide datapoints at a
low frequency around 10 to 15 Hz. This is mainly due to the current in-efficiency
of large policies. Their inference often can not run faster than 10 Hz for compu-
tational reasons. The proposed recording pipeline in this thesis runs at 30 Hz to
enable future-proof data collection at a higher temporal resolution. Running the
SLAM algorithm in read tracker at targeted frequency of 60 Hz, has proven to
result in better pose data than running it a lower frequency like 30 Hz.

For debugging and post-processing the software suite includes a few notable pro-
grams: (1) multiple visualization methods, which can easily be used to visualize
data after recording, (2) a web viewer, which broadcasts the image streams to
the network and helps to validate camera data, and (3) testing scripts for every
individual component.
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Name Shape Data Type Size
timestamp 1 uint64 8 bytes

image timestamp 1 uint64 8 bytes
color image 480×640×3 uint8 912,600 bytes
depth image 480×640 uint16 614,400 bytes

pose timestamp 1 uint64 8 bytes
pose value 4×4 float64 128 bytes

pose confidence 1 uint8 1 byte
trigger timestamp 1 uint64 8 bytes

trigger state 1 uint8 1 byte
gripper timestamp 1 uint64 8 bytes

gripper state 1 uint8 1 byte

Table 4.2: Data structure of a single timestep. Each sensor reading is saved with
a corresponding timestamp to preserve the information at what time
exactly the reading was made. Datatypes most relevant to policy
learning are bold.

Data Format

The data is recorded at 30 Hz. Each trajectory contains the following elements:

• A RGB camera stream at 640 × 480 resolution.

• A depth camera stream at 640 × 480 resolution.

• The end-effector poses (6 DoF) relative to the initial pose at t0.

• The robot gripper states (1 DoF).

• The timesteps at which the datapoints are recorded.

The data is saved in the commonly used Hierarchical Data Format ver-
sion 5 (HDF5). This format is suitable for robot learning data because it allows
for the storage of large and complex datasets in a single file, and therefore making
data organization and access more straightforward. HDF5 supports a hierarchi-
cal structure, enabling the creation of datasets and groups that mirror the logical
organization of robot learning data. In our case every data stream is stored in
its own dataset within the HDF5 file. The rows of Tab. 4.2 each correspond to
a dataset in this file, which stores multiple of these values. A single datapoint of
the trajectory consists of 1, 527, 171 bytes. This equals to 1.456 MB per timestep.
At a recording frequency of 30 Hz, one episode with a typical length of 20 s, is
approximately 870 MB large.
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Chapter 5

Evaluations

The goal of this thesis is to create an intuitive and effective data collection inter-
face that reduces the embodiment gap, gathers transferable data, and facilitates
the learning of various manipulation skills for robots. Chapter 4 proposed a
data collection framework, which takes the form of a sensorized hand-held grip-
per. This chapter aims to evaluate the proposed system under two different
aspects; (1) How accurate can we recover robot-native actions from human mo-
tions? And (2) now efficient is the data collection process? First, Sec. 5.1
describes the over-arching evaluation strategy. This is followed by analyses on
the ability to accurately recover actions in Sec. 5.2 and on the data collection
efficiency in Sec. 5.3. Finally, the experimental results are discussed in Sec. 5.4.

5.1 Validation Strategy

Different aspects are important to consider when evaluating a framework for its
ability to record demonstrations. This section will provide a short discussion on
what these aspects are, how this is usually done in other works, and how this
chapter aims to validate the proposed system.

As identified by recent works like UMI [ChiEtAl24], two aspects are central to
evaluating a data collection framework:

Accuracy (Sec. 5.2): How well can robot-native actions be recovered from hu-
man demonstrations? How does the framework perform in diverse environments?
– Data quality goes hand in hand with transferability to an effective robot policy.

Efficiency (Sec. 5.3): How fast can manipulation data be recorded? Is the
usage intuitive and operator-friendly? – Efficiency in data collection usually
corresponds to the scale at which demonstrations can be collected.
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(a) Open drawer. (b) Open door. (c) Pick cup. (d) Move soap.

Figure 5.1: Example demonstrations of various tasks. The system’s demonstra-
tion capabilities are only limited by the operator’s motion range, the
parallel gripper’s physical limits, and the need for a power outlet.

When considering recent works (see Chap. 3) for validation strategies, it can be
noted, that these works often evaluate their data collection frameworks on how
well recorded demonstrations transfer to effective robot policies. For this, there
is a line of work on evaluating policy perfomance for manipulation. Examples for
this are RLBench [JamesEtAl20], MetaWorld [YuEtAl20], and FMB [LuoEtAl24].
These benchmarks aim to assess the learned policy on manipulation tasks, but
not the ability to actually perform and record demonstrations. This thesis focuses
on data collection and not policy learning. Therefore, only the ability to record
demonstrations is evaluated.

The proposed framework’s ability to capture manipulation skills is studied with
a single manipulation task: cup arrangement. Evaluating the demonstration
capabilities using only one task is sufficient because demonstrating other task is
trivial and shown in Fig. 5.1.

The cup arrangement task is specifically suitable because it is also used to evalu-
ate the UMI gripper in [ChiEtAl24] and therefore provides a quantitative baseline
to compare our device’s data collection efficiency to the state-of-the-art frame-
work UMI. Additionally, the task can be used for the qualitative analysis of the
action recovery system since it is a manipulation consisting of complex and di-
verse motions.

The cup arrangement task is defined as follows: Place a cup on the saucer with
its handle facing to the upper right of the robot or operator (see Fig. 5.2).
Task success is defined as: the cup is placed upright on the saucer with its
handle oriented inside the upper right quadrant of the saucer. This task tests
the system’s ability to demonstrate both prehensile (pick and place) and non-
prehensile actions (i.e., pushing to re-orientate the cup).
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(a) Start (b) Pick (c) Move (d) Place (e) End

Figure 5.2: Cup Arrangement: The task is to place a cup on the saucer with its
handle facing to the upper right.

As pointed out in Sec. 3.1, one of the most important characteristics of demon-
stration datasets is data diversity. To test the system’s ability to capture diverse
scenes, we evaluate in five different environments, which are shown in Fig. 5.3.
When data collection is possible in any environment, we refer to this as in-the-
wild.

In addition to performing the cup arrangement task, we utilize two different
methods for quantifying the system’s accuracy; (1) a motion capture system,
which provides an accurate ground truth trajectory for comparison (but is limited
to a specific lab setting) and (2) a contraption which guides the system through
a predefined motion path, therefore also providing a ground truth path (but
without timestamps).

5.2 Action Data Accuracy

Demonstration data quality usually corresponds to transferability to an effec-
tive robot policy. To evaluate the quality of collected demonstrations, we an-
alyze the developed system in two ways; quantitatively (Sec. 5.2.1) and quali-
tatively (Sec. 5.2.2). Quantitatively, pre-defined motions are performed in five
environments, which can then be compared to the device’s estimated pose data.
Additionally, for the Vicon Lab environment, ground truth trajectories are col-
lected while performing the cup arrangement task (which is stochastic by nature).
Qualitatively, the cup arrangement task is performed in all five environments.
Then, the recorded pose data can be used to discuss qualitative characteristics.
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– artificial lighting
– artificial features
– short distances (1-2 m)

Lab (Small)

Environment Tracking Camera View

– artificial lighting
– natural features
– long distances (>5 m)

Lab (Large)

– artificial & natural lighting
– natural features
– medium distances (3-5 m)

Lab (Vicon)

– artificial lighting
– natural features
– short distances (<2 m)

Kitchen

– natural lighting
– natural features
– long distances (>10 m)

Outside

Figure 5.3: Experimental environments and corresponding exemplary views
recorded by the tracking camera.
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(a) Guide-rail for defined motion. (b) Experiment in Lab (Vicon).

Figure 5.4: A contraption, that guides the device’s motion along a specified dis-
tance, is used to quantify pose accuracy in different environments.

5.2.1 Quantitative Analysis

To quantify the accuracy of the system’s pose estimation, a guided motion is
performed in all five environment. This motion is executed using what is shown
in Fig. 5.4 – a contraption that guides the device along a straight line for a
specified distance.

After the guard-rail is placed in the workspace, the protocol for this experiment
is as follows: 1. fix the device at the start of the guide-rail, 2. start recording a
demonstration using the record button, 3. move the device along the guide-rail
until the it reaches the specified stop at 30 cm, 4. move it backwards until it
reaches the starting point, and 5. stop the recording. This process is repeated
three times in all five environments.

In Fig. 5.5, the recorded positions during this experiment are depicted. Three
different behaviours can be observed here. The paths recorded in Lab (Small)
and Kitchen are very much following the ground truth. In contrast, the paths
recorded in Lab (Large) and Lab (Vicon) show a noticeable drift in position.
Finally, the position data recorded in the Outside environment shows a path,
which is unable to track the ground truth.

Figure 5.6 visualizes the error of the positional tracking during the experiment.
Since there are no timestamps available to match the trajectory in the temporal
domain, a point-to-curve euclidean distance is chosen as a metric for comparison.
Since the pose data from the Outside environment is identified to be impractical
in Fig. 5.5, it is omitted here. The observations from above are confirmed using
the error metric; paths recorded in Lab (Small) and Kitchen are able to track
the ground truth with an error of below 5 mm. For paths from Lab (Large) and
Lab (Vicon) a maximum error of 30 mm can be observed at the time, when the
device reaches the end of the guard-rail.
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Figure 5.5: Recorded paths and ground truth in the x-z-plane for five different
environments. The device is moved 300 mm along the z-axis (back
and forth). This motion was done three times in every environment.
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(a) Vicon motion capture system. (b) Reflective markers on device.

Figure 5.7: Experimental setup using a Vicon motion capture system. It is used
to track the movements of reflective markers placed on the proposed
device.

In a addition to guard-rail method, which is only able to provide a ground truth
for one-dimensional motions, a Vicon motion capture system [Vicon24] was used
in the Lab (Vicon) environment to acquire accurate ground truth measurements
for complex motions. For this, reflective markers are placed on the device. A
network of cameras emits infrared light, which reflects off the markers and back
to the cameras. The system then triangulates the position of each marker in three-
dimensional space by analyzing the multiple viewpoints from different cameras.
This data is processed to create an accurate ground truth pose of the device.

For measurements using the Vicon system the following protocol is used: 1. start
recording a demonstration using the record button, 2. perform the cup arrange-
ment task, 3. stop the recording, and 4. rearrange the cup and saucer to another
initial state for the task. This process was repeated 24 times to get a compre-
hensive dataset that captures a variety of movements and interactions.

Figure 5.8 shows the positional tracking errors between the estimated pose of
the demonstration interface and the actual pose, which was recorded using the
Vicon motion capture system. A mean tracking error of around 30 mm with
peaks up to 100 mm can be observed. There is no significant change in the pose
difference during the progression of the demonstration. Using the measurements,
a average tracking error of 32.83 mm is calculated for the cup arrangement task
in the Lab (Vicon) environment.
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Figure 5.8: Positional tracking error per spatial axis in the Lab (Vicon) environ-
ment while performing the cup arrangement task.

5.2.2 Qualitative Analysis

In Sec. 5.2.1, two methods are used to quantitatively analyze the positional
tracking capabilities of the developed system. Both methods are limited in their
ability to fully evaluate the tracking ability: the guard-rail method is limiting
the ground truth data to one-dimensional motions and the Vicon motion capture
system can only be used in one environment, Lab (Vicon). To address this, this
section will compare recorded trajectories from all environments qualitatively.

For this the following experiment was conducted: in every environment the cup
arrangement task was performed three times by the same operator with random
initial cup and saucer states. This way, a diverse dataset of trajectories was
collected which makes qualitative comparison between the different environments
possible.

Figure 5.9 shows a random cup arrangement trajectory for each of the five envi-
ronments. Here, similar results to the ones in Sec. 5.2.1 can be observed. The
trajectories recorded in Lab (Small) and Kitchen are look very smooth and do
not contain noticeable twitches or noise. In comparison, the trajectories from
Lab (Large) and Lab (Vicon) do not share these characteristics. They show un-
natural twitching and noise data. Finally, the trajectory recorded in the Outside
environment does not represent any reasonable motion.
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Figure 5.9: Qualitative comparison of cup arrangement trajectories in different
environments. Trajectories recorded in Lab (Small) and Kitchen are
smooth and twitch-free. Trajectories from Lab (Large) and Lab (Vi-
con) look noisy and include small twitches, but still represent rea-
sonable motion. The trajectory recorded in the Outside environment
does not show a feasible motion.
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5.3 Data Collection Efficiency

For acquiring large and diverse datasets it is important that the method of ac-
quisition is scalable. Metrics for how scalable a data collection approach is, can
be the cost of a setup and how accessible its components are. Another metric
for scalability is the efficiency at which demonstrations can be recorded. For
this, completion times or throughput of demonstrations are usually considered.
This section will quantify and compare the throughput of the proposed system
to other recent data collection methods.

To measure the throughput at which manipulation tasks can be demonstrated, we
conduct a simple user study with three participants. Each user was granted a brief
1-minute orientation session, introducing them to the basics of the device. This is
then followed by a 2-minute practice phase, allowing them to gain familiarity with
the device and its usage. Following the practice phase, the participants begin the
task execution phase, with a time limit of 3 minutes. During this time the users
perform the following steps: 1. start the recording of an episode, 2. perform the
cup arrangement task, 3. stop the recording, and 4. rearrange the cup and saucer
to a new initial position. These steps are repeated until the 3 minutes time are
over. Note that the time taken to reset the environment, randomize objects, and
handle system faults are also counted in this experiment to accurately represent
the real-world data collection throughput.

Figure 5.10 shows the results of the user study. The three participants were able
to collect 16, 13, and 11 demonstrations in 3 minutes. This results in an average
of 267 collections per hour with the proposed device. The state-of-the-art hand-
held gripper UMI [ChiEtAl24] reports an average of 111 collections per hour for
the cup arrangement task. For proper comparison with UMI, a new baseline for
human hand collection was established: 680 collections per hour. UMI reports
a 48 % speed of the human hand. Using the established baseline, the proposed
device reaches 39 % speed of the human hand. Note, that this comparison is
relative and the proposed device can capture more than double the amount of
absolute demonstrations collected by UMI within an hour.

During the user study, feedback was collected from the participants. All par-
ticipants reported that the use of the device was intuitive and therefore easy to
learn. As a downside, the participants reported that the data collection becomes
strenuous after a couple of minutes because of the device’s front-facing center of
gravity (caused by the gripper).
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Figure 5.10: Throughput comparison. Collections per hour for the cup arrange-
ment task are compared to the human hand speed and the results
reported by UMI [ChiEtAl24]. Teleoperation is done with a 3D
space-mouse.

5.4 Discussion

This chapter aimed to analyze the proposed system’s effectiveness for collecting
manipulation data. For this, two central aspects were evaluated: data quality
and the efficiency of data collection. This section will briefly discuss the results
and try to identify shortcomings of the developed device.

Action Data Accuracy

The action recovery system was evaluated using quantitative and qualitative
methods. Section 5.2 described how three different behaviours are observed.
First, accurate and smooth action recovery at tracking errors below 5 mm for the
Lab (Small) and Kitchen environments is observed. Second, tracking behaviour
with positional drifts and twitches for the Lab (Large) and Lab (Vicon) envi-
ronments. An average trajectory tracking error of 33 mm was identified in Lab
(Vicon) using a motion capture system. Finally, when performing demonstrations
in the Outside environment, the recorded trajectory data does not represent any
reasonable motion.

When looking at the characteristics of the used environments, a correlation be-
tween tracking performance and distance to features in the environment can be
observed. In Lab (Small) and Kitchen, the tracking camera is recording features
like a wall or a cabinet in close proximity. For Lab (Large) and Lab (Vicon),
features like the wall are further away. In the Outside environment, the tracking
camera mainly records the sky. Note, the SLAM algorithm used to recover pose
data is using RGB-images, IMU data, and depth information. An explanation for
the observed behaviour can be that the SLAM algorithm, and therefore tracking
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performance, heavily depend on features in the depth domain – when recording
demonstrations in close proximity to the environment’s features, tracking perfor-
mance is noticeably better than if the features are further away from the device.

Since the source code of the tracking algorithm, used be the ZED Mini tracking
camera, is not publicly available, no information on the importance of depth data
for tracking could be gathered.

The state-of-the-art hand-held data collection system UMI [ChiEtAl24] reports a
SLAM tracking accuracy of 6.1 mm, determined using a motion capture bench-
mark. Note, UMI performs pose recovery in post-processing, after recording
the demonstrations, utilizing ORB-SLAM3 [CamposEtAl21]. In comparison, the
system proposed in this thesis is capable of real-time action recovery with an
accuracy of below 5 mm in environments where features are close to the device.

Data Collection Efficiency

The speed at which demonstration can be collected was analyzed during a user
study with three participants. After a short orientation and practice phase, the
users performed the cup arrangement task for three minutes. On average, the
proposed device enables data collection at a speed of 267 demonstrations per hour
(doing cup arrangement). In comparison, the throughput when demonstrating
this task with UMI [ChiEtAl24] reported to be 111 demonstrations per hour.
That means, the developed device more than doubles the data collection speed
compared to UMI. A reason for this is likely the improved workflow control using
a thumb button. With the proposed device, the operator does not need a second
hand to start and stop data recordings.

To compare the device’s throughput to the human hand speed, a baseline was
established: 680 collections per hour for the cup arrangement task. This is more
than double the speed reported by UMI for the human hand baseline. The
discrepancy may be due to the stochastic nature of the cup arrangement task, as
different operators may perform the task in varying ways. Therefore, comparing
absolute demonstration speeds may not fully capture the efficiency of the devices.
To address this, relative speeds of data collection compared to the human hand
speed should be considered. For the developed method, a relative speed of 39 %
was identified. This is less than the relative speed of 48 % reported by UMI.

While the developed method captures demonstrations faster than UMI in absolute
terms, it is slower when compared to human speed. Note that a limitation of this
analysis is the small sample size of participants and the number of demonstrations
compared to UMI’s analysis. Future work could involve a more extensive analysis
with a larger sample size.
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Conclusion

This thesis covered the design of a suitable concept for portable data collection
using a sensorized hand-held gripper interface. This new device extends the capa-
bilities of state-of-the-art interfaces in three ways. First, it enables real-time data
acquisition, including visual and depth information. Second, it simplifies work-
flow control by introducing easy-to-use control interfaces. Finally, it improves
accessibility by supporting the use of different end-effectors. The following pro-
vides a concise summary of the thesis’ findings and concludes with an outlook on
promising directions for future work.

6.1 Summary

Starting from the initial problem statement, the fundamentals of learning ma-
nipulation tasks from demonstration were presented in Chap. 2. It begins by
formalizing manipulation learning tasks using POMDPs and describing the com-
ponents such as state and action spaces, and policy structure. Various approaches
to learning from demonstrations (LfD) are then discussed, highlighting the dis-
tinction between demonstration and imitation methods. The chapter outlines
methodologies for gathering demonstrations, addressing the correspondence prob-
lem, and details methods for deriving policies from demonstration data, focusing
on mapping functions for policy learning.

A review of the state-of-the-art policy learning and data collection methods was
presented in Chap. 3. It discussed learning algorithms and datasets, high-
lighting the shift towards deep neural networks and transformer-based models
due to their ability to handle multimodal observations and scale with large, di-
verse datasets. Various data collection methods were examined, including visual
demonstrations, shadowing, teleoperation, and hand-held tools, each with its ad-
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vantages and limitations. Hand-held tools were identified as a promising data
collection approach because of their portability and intuitive use. Limitations
of hand-held methods were identified in sensing, feedback, workflow complexity,
and end-effector specificity.

Based on this, a concept concept for an intuitive and effective data collection
interface was developed in Chap. 4. The proposed system features a 3D-printed
handle equipped with a RGB-D camera, a tracking camera, a gripper control trig-
ger, and a recording button. These elements facilitate the capture and transfer
of human manipulation skills into a robot-native data format and ensure for-
ward compatibility with real-time data processing. The modular design supports
various end-effectors and follows ISO standards to maintain compatibility with
commonly used robots. Detailed explanations cover the Observation Module’s
design, including the strategic placement of the wrist-mounted camera to min-
imize the observation gap, and the Action Handle’s mapping of human actions
using visual-inertial SLAM for pose estimation. The chapter also outlines the
system’s hardware setup, workflow, and data processing methods.

In order to obtain first insights on the effectiveness of the proposed system, the
device was evaluated in Chap. 5. This chapter assesses the system’s accuracy in
recovering robot-native actions from human motions and the efficiency of the data
collection process. The validation strategy includes quantitative and qualitative
analyses, focusing on a specific manipulation task, cup arrangement, performed
in various environments. Quantitative tests using guided motions and a Vicon
motion capture system show that the system performs well in environments with
nearby features but struggles in featureless or large spaces. Qualitative analysis
further supports these findings. Efficiency is assessed through a user study, show-
ing the developed system allows fast data collection but is slightly less efficient
relative to human hand speed when compared to other hand-held methods. The
chapter concludes by discussing the correlation between tracking performance
and environmental features.

To conclude, this thesis presented an effective data collection system for acquiring
demonstrations for the learning of manipulation tasks.
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6.2 Outlook

This thesis offers several promising directions for future work. One key area is the
further experimentation and evaluation of transferring recorded data to effective
robot policies. This involves collecting a larger dataset of demonstrations across
various manipulation tasks. Using this expanded dataset, a manipulation policy
such as ACT [ZhaoEtAl23] or Diffusion Policy [ChiEtAl23] could be trained and
assessed on state-of-the-art manipulation benchmarks for robot learning.

Multiple ablation studies should be conducted to analyze the performance of the
manipulation policy concerning the data collected by the proposed hand-held
device. Factors to be examined include camera positioning and field of view, the
use of depth data, temporal frequency of data points, and the use of different
end-effectors.

Regarding action data accuracy, the SLAM-based pose estimations have proven
to be the most fragile part of the action transfer process, indicating a need for
further improvements. Comparative studies of different cameras and SLAM im-
plementations could be beneficial. Another approach could involve testing differ-
ent localization methods, such as external static tracking cameras. The use of a
wrist-mounted fish-eye lens to capture sufficient visual context, as demonstrated
by UMI [ChiEtAl24], appears to be a particularly promising approach.

For data collection efficiency, our user study was limited to inexperienced users
who received only brief training. Additional, more comprehensive training could
significantly improve users’ proficiency in using the device, and this could be
explored in future studies.

A notable shortcoming of hand-held data collection devices is the potential to
collect valid but hardware-infeasible trajectories (see Sec. 3.3). In previous works
like UMI, this issue was addressed through post-processing and filtering of the
data. The device proposed in this thesis enables real-time data processing and
could simulate the kinematic constrains of downstream robots. These calculations
could then be used to provide immediate feedback to the operator during data
collection, alerting them to any infeasible paths being demonstrated.
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Appendix

A.1 Contents Archive

There is a folder PRO 080 Grothusen/ in the archive. The main folder con-
tains the entries

• PRO 080 Grothusen.pdf : the pdf-file of the thesis PRO-080.

• Data/: a folder with all the relevant data, programs, scripts and simulation
environments.

• Latex/: a folder with the *.tex documents of the thesis PRO-080 written
in Latex and all figures (also in *.svg data format if available).

• Presentation/: a folder with the relevant data for the presentation in-
cluding the presentation itself, figures and videos.
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