
Learning Model Predictive Control
with Attention for Real-World Navigation

Jannik Grothusen
jannik.grothusen@berkeley.edu

Stjepan Kusenic
stjepank@berkeley.edu

Abstract: Real-world robot navigation in human-centric environments remains
an unsolved problem. Model Predictive Control (MPC) has emerged as a pow-
erful control strategy in the field of robotics, offering the capability to optimize
performance while considering constraints and predicting future behavior. The
combination of deep learning techniques, particularly Transformer architectures,
with MPC, has the potential to significantly improve the efficiency and applicabil-
ity of control policies in real-world systems. This project presents Transformer-
MPC, an approach that integrates Transformer-based attention mechanisms into
the MPC framework for a context-aware, learnable control policy. The architec-
ture is trained end-to-end via imitation learning to mimic expert demonstrations.

Code & Dataset: https://github.com/J4nn1K/transformer-mpc
Training: https://wandb.ai/j4nn1k/transformer-mpc/

Keywords: Transformer, Attention, Model Predictive Control

1 Introduction

Model Predictive Control (MPC) has been a popular method for planning and control of robotic
systems due to its ability to incorporate constraints and optimize for performance in real-time. It is
an optimal control technique in which the calculated control actions minimize a cost function for a
constrained dynamical system over a finite, receding, horizon [1].

Designing cost functions for MPC that can adapt to varying environments and contexts is a challeng-
ing task. Recently, deep learning techniques have been introduced to enhance the performance of
MPC and adapt to various situations more effectively. One such architecture, the Transformer [2],
has been successfully applied in various tasks due to its attention mechanism and scalability. In
this project, we present an approach that combines MPC with Transformer architectures, named
Transformer-MPC.

Our Transformer-MPC leverages the power of deep learning to adapt and improve its performance
in real-world navigation scenarios. By using a learnable inverse optimal control framework, we
integrate sensory context into the cost function and generate actions for the robot based on the
context. Our method ensures a viable trajectory and significantly reduces user-defined constraints in
the MPC problem, resulting in decreased computational demands for solving the MPC optimization.

2 Related Work

As we look into Model Predictive Control and try to combine it with a Vision Transformer archi-
tecture [3], we need to consider the previous works done in these fields. This paper takes great
inspiration from the work done by Xiao et al. [4]. In their paper, they introduce a Performer-MPC
approach to tackle the challenges of real-world navigation systems. Thus, they combine MPC with
imitation learning used to learn a cost function with vision inputs by Performers [5]. This leads to
significant performance improvements compared to standard MPC policies.

https://github.com/J4nn1K/transformer-mpc
https://wandb.ai/j4nn1k/transformer-mpc/


Figure 1: Overview of the Transformer-MPC. The latent embeddings are used to construct a context-
dependent learnable cost.

An earlier approach exploring the integration of computer vision techniques into MPC is presented
by Drews et al. [6]. For their purpose, they build a vision-based MPC framework using deep con-
volutional neural networks to predict cost functions from RBG images. Furthermore, these cost
functions can be immediately used for online trajectory optimization with MPC. Not only did the
authors achieve this, but the neural net even learns out-of-plane representations which can be used
to generate a map of the drive-able area in front of a vehicle. This gives the controller a performance
edge in real-time applications and allows for more aggressive driving styles.

A further vision-powered approach taken by Adamkiewicz et al. [7] proposes an algorithm that uses
a Neural Radiance Field to represent the environment of the robot. Only an onboard RGB camera is
then used for localization. They pre-train the Neural Radiance Field offline and give the robot a goal
to navigate through the unoccupied spaces. Therefore, their vision-based robot navigation pipeline
consists of a trajectory planner and pose filter in an online re-planning loop. With this setup, they
manage to navigate and re-orientate robots even in narrow gap situations.

With this brief look over the field, we see that the combination of control methods with computer
vision techniques can bring significant efficiency bumps in robotics systems while complying with
strict constraints.

3 Transformer-MPC: Learnable MPC with Attention

The principal challenges of synthesis of model predictive controllers are: (i) to construct cost func-
tions that remain suitable across a wide variety of robot-environment situations, and (ii) to generate
reliable solutions to the underlying trajectory optimization problems. This project focuses on the
first challenge, specifically by moving away from the traditional method of hand-engineered cost
functions and embracing a learning-based inverse optimal control framework. We use sensory con-
text to induce what MPC problem to solve in order to generate actions. We first outline the training
and inference procedures involved in the learnable MPC framework, and then discuss the details of
the learnable components. For a comprehensive visual overview, refer to Fig. 1.

Let the context be an image frame such as an occupancy grid. As in Vision Transformer architec-
tures [3], each frame is flattened to a sequence. Each element (token) of the sequence corresponds
to a different patch of the original frame which is then enriched with positional encodings. The
preprocessed input is then fed to self-attention and MLP layers. The final embedding is chosen as a
latent representation of the entire context to parameterize the learnable cost.

3.1 Learnable Model Predictive Control

Let C0 denote the current context. Consider a feedback policy implicitly defined by solving the
following parametric optimal control problem at each time step:

arg min
u0...uT−1

Jc (u, θ | C0) =

T−1∑
t=0

c (xt,ut, t;C0, θ) + cT (xT ;C0, θ) ,

s.t. xt+1 = f (xt,ut; θ) , x0 = g (C0, θ) given.

(1)

2



Denote the optimizer as u∗ (x0;C0, θ), and the corresponding optimal state sequence as
x∗ (x0;C0, θ). Here, θ are learnable parameters for stagewise and terminal cost neural net-
works {c, cT } , f the dynamics function and g current state estimator. The dynamics function here
corresponds to the drive dynamics of our robot.

We take an Imitation Learning approach where the robot has access to N expert demonstrations.
The MPC structure provides a form of a strong inductive bias for Imitation Learning and can lead
to improved data efficiency, robustness, and generalization. Denote ūi =

(
ūi
0, . . . , ū

i
Ti−1

)
and

x̄i =
(
x̄i
0, . . . , x̄

i
Ti

)
as the control and state sequence for the ith demonstration snippet, with asso-

ciated sensor context Ci
0, which can be extracted from offline planning or human teleoperation. We

optimize θ as follows:

θ⋆ = argmin
θ

N∑
i=1

Jl
(
ui∗(θ) | ūi

)
, (2)

where Jl denotes the total imitation loss that measures the discrepancy between MPC-generated and
expert state-control trajectories. We use the squared L2 norm as our loss criterion.

3.2 Training via Bi-level Optimization

The training optimization problem in Eq. 2 also contains the MPC optimization, Eq. 1. This can be
seen as bi-level optimization as the higher level finds the optimal θ and the lower level uses this to
get the optimal control sequence. In order to perform stochastic gradient descent for the higher-level
problem, we need the gradient of Jl with respect to θ. This gradient should be evaluated at a control
sequence u∗ (θk) where θk denotes the parameters of the current iteration k. As shown in [4], this
quantity decomposes as a vector-Jacobian product,

∇θJl
(
u∗ (θk) | ūi, x̄i

)
= ∇uJl

(
u∗ (θk) | ūi

)T
∂θu

∗ (θk) . (3)

The first term in the product on the right-hand side is the gradient of the total imitation loss. The sec-
ond term is the sensitivity of the MPC solution with respect to parameters, which may be efficiently
computed using the Implicit Function Theorem:

∂θu
⋆ (θk) = −

[
∇2

uJc (u
⋆, θk)

]−1 ∇2
θ,uJc (u

⋆, θk) . (4)

By chaining, the vector-Jacobian product from Eq. 3 can be efficiently calculated as

∇θJl (u
∗ (θk)) = −

[[
∇2

uJc (u
⋆, θk)

]−1 ∇uJl (u
∗ (θk))

]T
∇2

θ,uJc (u
⋆, θk) . (5)

Please refer to [4] for details.

3.3 Attentive Cost Functions for Learnable MPC

In our inverse optimal control framework, only the cost function contains learnable parameters.
Following [4], we structure this cost as a context-dependent quadratic function, parameterized by an
embedding matrix P and vector q:

c (x,u, t;C0, θ) =

[
x
u

]T
PT (C0, θ)P (C0, θ)

[
x
u

]
+ q (C0, θ)

T

[
x
u

]
. (6)

The Transformer-backed cost model attends to the current context C0 to generate residual quadratic
cost terms for MPC to optimize. Since the residual cost is convex and well-conditioned, the MPC
solutions can be easily obtained. The backend maps the current contexts C0 into a latent embedding
which can be reshaped into the matrices P and q to support the quadratic parameterization of Eq. 6.

3



Figure 2: Experimental Setup (left). Example scenario for data collection (right): an obstacle on the
right side of the hallway.

4 Experiments

Our Transformer-MPC is designed to be deployed on an omnidirectional wheeled robot, which has
a 2D LiDAR and an RGB-D camera in the front. We choose the ClearPath Ridgeback, a midsize
indoor robot platform that uses an omni-drive to enable exact position control within 3 degrees
of maneuverability. The robot can move at a linear speed between [−1.1, 1.1]m/s. The robot
is controlled using the Robot Operating System (ROS). Based on the LiDAR measurements we
generate at each time step an occupancy grid with 0.1 × 0.1 m cells (occupied, free, or unknown)
around the robot within [−10, 10]m of range for both x and y axis. The RGB-D camera records
images with a resolution of 640× 480 pixel.

In the chosen experimental scenario, the task involves maneuvering through a narrow hallway. The
MPC formulation is designed to maintain a forward speed of 0.4m/s, with the expectation that the
learned cost function will adhere to a safe distance from surrounding obstacles.

4.1 Data Collection

To learn to avoid obstacles in the hallway navigation scenario, we teleoperate the robot and record
more than 50 episodes of hallway navigation. Each episode is generated in a different environment.
Stationary and moving obstacles are used to simulate real-world situations. Fig. 2 shows an example
scenario.

We use the rosbag package to record the sensor measurements and expert control inputs from ROS
topics. The control inputs u = [ux, uy, uω] are the two translational and one rotational velocity
on the ground plane. Fig. 3 shows a data sample. The final dataset consists of more than 100.000
datapoints with a size of roughly 100 gigabytes.

4.2 Implementation

At its core, the Transformer encoder is implemented similarly to the ViT encoder in [3] using
JAX [8]. The optimal control solver of the MPC is implemented using the differentiable Iterative
LQR implementation of trajax [9].

Since we collected our own training data, we implemented custom dataset and dataloader classes
using Dataset and Dataloader from torch.utils.data from PyTorch [10]. Our policies are
trained on a TPU from Google’s TPU Research Cloud.

4.3 Results

The goal of this chapter was to compare Transformer-MPC to regular MPC. The training perfor-
mance of Transformer-MPC is illustrated in Figure 4. We conducted extensive experiments to op-
timize the hyperparameters of our proposed approach. Insights can be found via the link provided
in the abstract. Despite the efforts, the lowest training loss achieved by our model is in the order of
10−3, which is two orders of magnitude higher than the (heuristically determined) desired 10−5 for
deployment.

4



Figure 3: Sample of collected data. The occupancy grid, RGB image, and depth image show an
obstacle on the left side of the hallway. The expert control inputs over the next T timesteps (right)
take the obstacle into consideration by moving slightly to the right (small uy).

Figure 4: Validation loss while training with three different input data types.

There are two potential reasons for the insufficient training performance of our Transformer-MPC
model. These are (i) inadequate tuning of model and MPC parameters: The cost function weights,
horizon length, and transformer hyperparameters might not have been optimally tuned, resulting
in suboptimal performance. A more extensive exploration of these parameters may be required to
identify the ideal configuration that allows the model to reach the desired training loss. And (ii) in-
sufficient size of the custom dataset: The current dataset might not be large enough to allow the
model to generalize well to new or unseen data. Consequently, the model may exhibit high error
rates when encountering unfamiliar situations. An expansion of the dataset with diverse and repre-
sentative samples could potentially improve the model’s performance.

5 Limitations

The presented architecture currently only leverages spatial attention, but in principle, it can leverage
the temporal axis as well. For example, in an approach with a walking human in a hallway, motion
history may shed light on how the human intends to move in the future, e.g., yielding left or right.
Furthermore, exploring richer modalities than the occupancy grid and RGB-D images, for example,
language contexts, may enable robot-human interactions beyond simple geometry. Additionally,
the quadratic form of our cost function limits its expressiveness and complexity. Incorporating
non-linear terms into the cost function, such as higher-order polynomials or even non-polynomial
functions can capture more intricate relationships and dependencies among the variables in our
optimization problem.

6 Conclusion

In summary, our paper presents Transformer-MPC, a learnable model predictive control system that
leverages Transformers to learn context representations and parameterize trainable cost functions.

5



We collected a custom dataset of expert demonstrations and trained our model. We expected our
model to learn to avoid local minima, maneuver through constrained spaces, and adhere to social
norms. Instead, the training performance of our model was insufficient, and we were not able to
validate its real-world compatibility yet.

6



References
[1] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and practice—a

survey. Automatica, 25(3):335–348, 1989.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale, 2021.

[4] X. Xiao, T. Zhang, K. Choromanski, E. Lee, A. Francis, J. Varley, S. Tu, S. Singh, P. Xu, F. Xia,
S. M. Persson, D. Kalashnikov, L. Takayama, R. Frostig, J. Tan, C. Parada, and V. Sindhwani.
Learning model predictive controllers with real-time attention for real-world navigation, 2022.

[5] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger, L. Colwell, and A. Weller. Rethinking at-
tention with performers, 2022.

[6] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg. Aggressive deep
driving: Model predictive control with a cnn cost model. arXiv preprint arXiv:1707.05303,
2017.

[7] M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson, J. Bohg, and M. Schwa-
ger. Vision-only robot navigation in a neural radiance world. IEEE Robotics and Automation
Letters, 7(2):4606–4613, 2022.

[8] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[9] R. Frostig. trajax: differentiable optimal control on accelerators, 2021. URL http://github.

com/google/trajax.

[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library, 2019.

7

http://github.com/google/jax
http://github.com/google/trajax
http://github.com/google/trajax

	Introduction
	Related Work
	Transformer-MPC: Learnable MPC with Attention
	Learnable Model Predictive Control
	Training via Bi-level Optimization
	Attentive Cost Functions for Learnable MPC

	Experiments
	Data Collection
	Implementation
	Results

	Limitations
	Conclusion

